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* Light meets materials
— Reflection
— Transmission
— Scattering
— Absorption

e Time scales of effects
— Fluorescence
— Heating
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Light absorption

* Light that is absorbed makes a photon disappear !
— Where is the energy going?

 Time scales of effects
— Fluorescence
— Heating
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Absorption & Fluorescence

Jablonski Energy Diagram
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Ground State

http://micro.magnet.fsu.edu/primer/techniques/fluorescence/fluorescenceintro.html
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Contents

e Absorbed light —> Heat
e Heat flow (heat equation)
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Heat

oo 00000
oo 00000
e o000 e e
oo 00000
oo 00000

Heat flows from warm to cold, Fourier law

Heat = energy contained in excited phonons (lattice vibrations)
for liquids: additionally in rotation of molecules
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Heat flux

1T

Which parameters determine the final state (temperature distribution) ?

thermal capacity, density/mass
Which parameters influence the dynamics of the flow?

thermal capacity, thermal conductivity, density
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How heat can be transported?

ﬁ Gun%

A A\AIA
Convection y

o

Radiation

Other (indirect) means?
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Phase Transition

1407 Gradient = 1/specific
heat capacity of water gas
1 vapour

temperature "1

I

("C)
w0
bailing
w0
- liquid Gradient = _1lspecific
melting heat capacity of water

iR

< Gradient = 1/specific

201 solid heat capacity of ice
evaporation needs “ T p—
much more (5x-10x)
. 1 kg of steam
energy than melting at 100°C
and heating the

material !

+ b5 kcals + 540 keak
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Transport Phenomena

e Heat flow

* Viscosity

Driving force for transport are spatial inhomogeneities, i.e. gradients

* Materials flow (diffusion)

j = —Ceradp
10 ;

_— = CT_

ot P

Transported quantity

System state

Material property

Nom de I'eq. V.1-1 j P cC
Fourier Heat flow T Kipcp

Fick Mass flow [n] D

Newton Momentum flow V I
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Heat flow

form of the equation in case the external heat source is present
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how temperature field
changes in time

v
- 4
A _ pvr+ L s n

dt 1‘ pfp 1‘

based on existing and external heat
temperature sources and heat
distribution losses
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Heat Source — Laser Irradiation

e Heat flux

— Laser heating depends on a large number of
parameters

Optical properties of material (R, a, ..)

Heat transport in and out of irradiation zone

Heat storage in and out of zone

Phase transition Enthalpies

Chemical reaction Enthalpies
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Laser (light) Source Term

Oty =Ly U=R) oy =1 )& J 90y

laser beam

incident light reflected light

[, =1,-R)

(
the (maximum) laser light intensity not reflected
from surface (z=0).
absorbed
light
substrate l
| the intensity distribution of the laser light

B g(x,y) in the xy-plane.

heat distribution in depth

f.., = a(T(2))exp| - j a(T(z"))dz'

in simplified case a(T)=const f(z) = exp(—az)
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Anurag Singhania Master thesis 2020
Computational result: approach 1
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Anurag Singhania Master thesis 2020
Experimental results

= 10 W, substrate preheated to 820 C, varying pulse durations
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Anurag Singhania Master thesis 2020
Experimental results

Effect of preheating wafer
= Diameter of the melt zone increases roughly 2 to 3 times irrespective of the pulse duration
= Height of material expulsion in the center increases significantly with increase in the pulse

Effect of external heating on height of material protrusion
Variation of size of melt zone with laser exposure time 30
B
110
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2 i7]
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T 80 =3 ) |
£ I = No preheating = 15 Yy @ With preheated silicon
E 70 ‘g wafer
% 0 I i A Preheated Wafer =
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('
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=
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Laser pulse width (ms)
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Heat Losses and Other Terms

Advanced Materials Processing with Intelligent Systems, MT, EPFL

Conduction j/v

Convection

R r

SR
el \

R Ve Ve B

Radiation ‘\(g'

Radiation

Gradient = 1/specific
heat capacity of water
vapour

boiling

140

120 gas

100
temperature

('C)
£

Phase transitions

liquid Gradient = 1/specific

melting heat capacity of water

. Gradient = 1/specific
01| solid heat capacity of ice

heat absorbed

Chemical reactions
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Free Convection

n=n(T)

T, -T,(0) )
T, ()

nT,)=n,

For surface A > 1cm?
air 17,'~107" [W/cmzK]

liquid 73, ~0.1-0.3 W /cm’K |

cooling by gas convention is not very efficient
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Laser Welding

Liquid convection still plays an important role in “slow” processes.
e.g. welding (drilling, cutting)

laser beam

. X
/ /
/ 7 //// /////
mélt Sample movement welded seam
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Radiation Cooling

Stefan—Boltzmann law J =0 & T 4

radiat.

Stefan-Boltzmann constant; o =5.7-107" [ I/2V 4}
cm K

Total emissivity: € = &(T')

polished metal: ¢ = 0.02-0.05 increases very strongly

oxidized metal: £ = 0.6 -0.7 with temperature!!!

glass, silica: &£ = 0.93 maybe important in some

soot: € ~(0.98 cases.
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Phase changes & Chemical reactions

Q phase.trans. = Vsolid —liquid . A[{melting T vliquid —gas AH vaporasation

AH_ = 2-10 kcal/mol AH,= 50-100 kcal/mol
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Comparison: Convection - Radiation

J =J +J

(AN C r

Jloss — 77 [I;(x’ y’ O’ t) o Tm (OO)] + Grgt |:T;4 (x9 y9 O? t) o Tm4 (OO):|

Example:

emissivity 0.4

J. ‘J,, ;3[W/cm2]
At: T =1000K
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Thermal Penetration Depth

* Pulsed laser irradiation results in a temperature
rise in the material to a limited depth.

Thermal
penetration depth

Heat diffusivity

thermal —

[ = 2\/DT

pulse

K
D=
pCp

K — heat conductivity
p — material density
C, — heat capacity

Advanced Materials Processing with Intelligent Systems, MT, EPFL

CW | ns laser ps/fs |
ﬂ\ -
/ N/
'\\V ‘x "y
S
S .
~— —
Target material Target material Target material

Bl Dark area: Heat affected zone  ~— Blue line: Shock waves
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Table of material properties

Matériaux P Lol T, [K] T, [K] ¢p [JIgK] K [Wiem K] D [em?s]
cm3]
Al 27 933 2720 0,90 2.4 1,03 good metal
Al,O4 40 2324 0,75 0,30
Al O3 cerami- 3,89 2340 3800 0,9 0,3 0.086
que) '
Au 19,3 1338 2980 0,13 3,15 1,22 good metal
C graphite 2,24 3923 4623 0.71 20; (22,3 |; 0,11
1)
C gamond 3,52 > 3822 0,50 20
Cr 7.2 2130 2945 0,46 0,95 0,29
Cu 8,95 1357 2840 0,39 3,95 1,14
Fe (coulé) 74 0,57 0,56 0,12
Acier (0.1% 7,85 0,49 0,46 0,12
C)
Acier inox 8,03 1723 3273 0,5 0,15
(304)
H,0 1 273 373 418 0,06 0,014
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Cooling/heating terms

« Convection may play a role for cooling of the
whole machined piece of material — not
relevant for machining

« Radiation may have contribution at very high
temperatures

* In most cases cooling of the laser machined
region takes place by heat conduction in the
piece

Advanced Materials Processing with Intelligent Systems, MT, EPFL S. Shevchik & P. Hoffmann
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Heat equation moving substrate

heating of the heat brought heat conducted
material by moving away

) Qe DOV IR IDETe, D,V TED

O(x,f) [W/em’] = Heat source
= Energy deposited, consumed or absorbed by unit of volume

p(7) [g-’cn'rﬁ‘] = Mass density

¢,(1) [VgK]= Specific heat at constant pressure

v, [em/s] = Relative speed of sample to beam
K [W/cm K] = Thermal conductivity

D [em*/s] = Heat diffusivity
K
P,

D:
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Heat flow in 3 dimension

2!:—-‘

- T _ po?re Qg g
" " e
Solution:
2
e Q -
Iz, 1) = {411:5'?}}”{((2 E};p[ iLDI]
pc »

m = dimension of problem (m =1, 2, 3)
Q = total energy deposited
p = mass density per distance, surface or volume (g/cmm)
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Laser Welding

What is the dimensionality of the heat flow problem at each of the stages?

Laser beam
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Result of linearized heat equation

e Semi-infinite substrate

e Si, A=514 nm
— All optimized

T .o IN center of 287°C

['C]

Temperature

to get

Distance from spot center r (um)

case Waist w, (um) Power (mW)
a 1 173.5
b 5 574
C 15 1535

Advanced Materials Processing with Intelligent Systems, MT, EPFL
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Result of numerical heat flow simulations

e Semi-infinite substrate ™% A
b o
_ \.\ (T) To= 300K
=
* Si,A=514 nm =
«° 1000
-
Lad
@
=
e
= 600
&
temperature dependence of =
heat conductivity and .
reflectivity is important to To . L
consider!!!! i 2
r* —o
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Heat Accumulation - Effect of the Repetition Rate

Photoresist Vacrel 8230

a~5000cm'@308nm — deep light penetration

effect visible at low rep.rate

~ br
§ - Vacrel 8230
© 5F g7 0y @ Tvg Vﬂvéjv v
= v 0 0 9
- 0y ° s” A
0 A 2
v 4l o 2
K Oy 0 , 4
z "
L A 10 Hz
@ 0 100 Hz
< v 200 Hz
y 0 300 Hz
o
i
(&
it
Lot | . ; A i | |
5 10

Fluence (J/cm?)

15

Figure 3. Ablation etching rate curves for Vacrel™ 8230
photoresist measured at 308 nm and 10, 100, 200 and

300 Hz. There is a clear shift in the ablation etching rate

curves to lower fluence as the repetition rate increases.
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Polyimide
a~105cm'@308nm - absorption on the surface
Effect will be visible only at high rep.rate

0.8

E Polyimide 5,
Ty 4
= o
E 0.6F fy
Ag
E’ 0,000
a NS
. 0.4 éﬂo.m
e Qaé & 10 Hz
= il
§' 0.2rF éfjﬁ o 300 Hz
= ij
ot
L DD“ L | 1 1 L |

D 1 2 3
Fluence (J/cmz}

Figure 2. Ablation etching rates for polyimide measured at

308 nm and 10 and 300 Hz. There is no repetition rate
effect for polyimide in this range of repetition rates.

S. Shevchik & P. Hoffmann

32



Heat Accumulation

=1
—
on

100 KHz

10 KHz
1 KHz
0 KHz

. [ PI, 308 nm, 11 shot
Polyimide ! SOt

a~105cm'@308nm - absorption on the surface

Effect will be visible only at high rep.rate .
0.10

0.05f

Etch Depth per Pulse (micron)

0.00

1 1 n 4 | 1 i L | L 1 " i
0.05 0.10 0.15 0.20
Fluence (J/cmzl

Figure 6. The simulated etching rate versus fluence for Pl
at 308 nm. Curves for repetition rates of 0, 1 and 10 kHz
are closely grouped.

high repetition rate v results v ~ (). lDOlzﬁ /' N
in heat accumulation effect €

and increase In ablation rate Burns F.C. and Cain S.R.:

J. Phys. D. Appl. Phys., 29 (1996)
1349
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Complete heat transfert through wall/window

J = A(Ti - ];)ntrans [J/S R W]

tranS

trans

] J
-5+ L em’sK

o window Utrans:2'10_4[W/cm2K]

wall 7y =0.5-107 [ W /cm’K |
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ns-machining vs. fs-machining
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91999 Clark-MXE. Inc. {  ©1993 Clark-MXR.. Inc.
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Ultrafast Laser Pulses

for t<1-10 ps pulses - light absorption is faster than heat transfer from
electron to atoms

b)

hot
electrons cool electrons

. lattice
cool lattice \

c)

hot,
superheated
lattice

cooling
electrons

1/2
heating rate is very high — heat penetration is low fﬂ? = Z{Drf)
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fs-laser machining

16132

Silizium

13454  100pM b

Speziallegierungen Kupfer

S. Shevchik & P. Hoffmann

LASER ZENTRUM HANNOVER E.V.
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